SCI、SSCI、EI、SCOPUS指导服务
论文翻译润色 论文预审评估 质量分析报告 期刊匹配推荐

与学术顾问沟通

航空航天复合材料结构非接触无损检测技术的进展及发展趋势

分类:工业设计论文发表 时间:2018-09-28 10:09 关注:(1)

  马保全,周正干*北京航空航天大学机械工程及自动化学院,北京100191

  摘要:新型复合材料在航空航天领域获得广泛应用,有些甚至已代替金属成为某些核心部件的主要结构材料,此类材料及其构件在结构、材料特性、所需检测条件等方面的特殊性对无损检测技术提出更苛刻、更有针对性的检测需求,如不能使用耦合剂、高效率、高可靠性、实时、直观、绿色环保等,非接触无损检测技术被认为是满足上述检测需求的重要手段,已有多种非接触检测技术为航空航天制造及维护提供服务。本文结合航空航天工业的发展趋势及该领域对新型复合材料的检测需求,就目前国内外研究较热且具有较大应用潜力的多种非接触无损检测技术(包括空气耦合超声检测技术、红外热像技术、激光超声检测技术、散斑干涉技术)进行综述,总结各方法所具有的技术特点、研究进展与应用情况。最后,综合各技术研究现状展望非接触无损检测技术的发展趋势,为此类技术在相关领域的研究与应用提供一定的参考和借鉴。

  关键词:非接触;无损检测;激光超声;复合材料;红外热像;散斑干涉;空气耦合超声

  中图分类号:V414.8;TB553文献标识码:A文章编号:1000-6893(2014)07-1787-17

  新型高性能复合材料的研发在国内外已经成为一个热点,多种新型复合材料的优异性能已得到了验证与普遍认可,并在航空航天领域发挥越来越重要的作用。随着材料工艺的成熟及产品质量的提高,高性能复合材料在航空航天领域的使用比例大幅度提升(波音787“梦想”飞机的复合材料用量已达结构质量的50%)[1],有些甚至已代替金属成为某些核心部件的主要结构材料,从而使航空航天技术的发展有了质的飞跃。

  在航空航天领域已得到应用的新型复合材料主要包括纤维增强复合材料(CFRP、GFRP、GLARE)、夹芯结构复合材料(蜂窝夹芯复合材料、泡沫夹芯复合材料)、耐高温复合材料(C/C复合材料、C/SiC复合材料)等,此类材料普遍具有高比强度、高比刚度、高模量和耐腐蚀等优异性能。碳纤维增强复合材料(CFRP)已广泛应用于雷达罩、客机机身、机翼、垂尾和方向舵等构件。图1(a)和图1(b)分别为波音787复合材料机身及机翼后缘。蜂窝夹芯复合材料以高弹性模量、隔音、隔热和防潮等特性用于雷达天线罩、发动机隔音板、客机机身、直升机旋翼叶片和机舱地板等[2-3]。图2为Mi-24型直升机旋翼叶片结构。

  纤维增强陶瓷基复合材料(CeramicMatrixComposites,CMC)以耐高温、抗氧化、抗烧蚀、良好的高温机械性能等特性逐渐代替金属成为新一代航空、航天器的高温热结构材料,典型应用包括航空发动机燃烧室、涡轮、火箭发动机喷管等耐高温关键件、大型客机和新型军用飞机的新一代高速刹车片等。图3为液体火箭发动机C/SiC喷管在高空台试车。橡胶包覆金属材料以其优异的耐腐蚀性能应用于火箭发动机燃料筒[4-6]。

  1非接触无损检测技术研究进展

  1.1空气耦合超声检测技术空气耦合超声检测技术是一种以空气作为耦合介质的非接触声学检测方法,除了耦合介质差异外,在超声激发与声传播机理方面与传统超声检测技术相比差异不大。该技术具有非接触、良好的检测分辨率、易实现自动化、适合原位检测和技术较成熟等优点,但是该技术一般采用点对点的扫查方式使得检测效率较低,同时超声衰减导致接收信号的信噪比较差。

  2非接触无损检测技术研究趋势

  2.1多技术融合的新型检测方法

  任何基于单一技术原理的无损检测方法都有其优势和局限性,探索多技术融合的新型混合检测技术可以实现优势互补,能以更合理的检测手段达到质量评价的目的,可提高检测效率和可靠性,是未来无损检测技术发展的新趋势。通过选择不同的激励与接收方法,可以组合出多种不同的检测新技术,例如由激光脉冲发生器激励出超声波,电磁超声换能器(ElectromagneticAcousticTransducer,EMAT)接收的组合技术可用于裂纹及材料厚度的检测[65],图13为采用Laser-EMAT混合技术监测焊缝质量。激光激励超声波,用空气耦合超声换能器接收的检测方法非常适用于基于表面波的无损检测,尤其在复合材料表面缺陷检测中更有效[66]。

  超声红外检测技术对航空发动机叶片表面/近表面闭合微裂纹及复合材料中脱粘缺陷的检测效果优异。空气耦合超声换能器激励出声波使闭合性裂纹区域产生摩擦热,通过红外热像仪探测缺陷的方法可应用于裂纹缺陷的检测[33]。新发展的电磁红外热像技术根据板中裂纹缺陷改变涡电流流向来实现缺陷分析,同时将脉冲相位法和锁相法应用于电磁红外检测,可提高检测可靠性[67-70]。

  参考文献

  [1]ChenSJ.Compositetechnologyandlargeaircraft[J].ActaAeronauticaetAstronauticaSinica,2008,29(3):605-610.(inChinese)陈绍杰.复合材料技术与大型飞机[J].航空学报,2008,29(3):605-610.

  [2]BalaskóM,SvábE,MolnárG,etal.Classificationofde-fectsinhoneycombcompositestructureofhelicopterrotorblades[J].NuclearInstruments&MethodsinPhysicsResearchSectionA,2005,542(1-3):45-51.

  [3]LiangHL,QiuHP,ChenJ,etal.Manufacturingtech-niqueoforthogonalbandingforaluminumhoneycombsandwichstructure[J].ManufacturingTechnologies,2009(Sup.):30-32.(inChinese)梁恒亮,邱海鹏,陈静,等.铝蜂窝夹层板正交结构件的制造方法[J].航空制造技术,2009(增刊):30-32.

期刊目录网是一家专业从事国内国外期刊学术论文发表指导,著作出版,发明专利的权威平台,提供文章翻译、文章润色、文章预审、期刊推荐、发表支持、书号申请、出书指导、专利申请等评职称相关学术成果服务。是您评职称学术成果指导首选权威平台。

Copyright © 2013-2022 www.qikanmulu.com,All Rights Reserved